2x(x+5)-3(x^2+2x-1)=9-5x-x^

Simple and best practice solution for 2x(x+5)-3(x^2+2x-1)=9-5x-x^ equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+5)-3(x^2+2x-1)=9-5x-x^ equation:



2x(x+5)-3(x^2+2x-1)=9-5x-x^
We move all terms to the left:
2x(x+5)-3(x^2+2x-1)-(9-5x-x^)=0
We multiply parentheses
2x^2-3x^2+10x-6x-(9-5x-x^)+3=0
We get rid of parentheses
2x^2-3x^2+10x-6x+5x+x^-9+3=0
We add all the numbers together, and all the variables
-1x^2+10x-6=0
a = -1; b = 10; c = -6;
Δ = b2-4ac
Δ = 102-4·(-1)·(-6)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{19}}{2*-1}=\frac{-10-2\sqrt{19}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{19}}{2*-1}=\frac{-10+2\sqrt{19}}{-2} $

See similar equations:

| 180.39=7(m+19.70) | | 5y^2+y-100=0 | | x+(x*1.2)=55 | | 3(x+10)-3=67-2x | | 5+m=16- | | 27-2y=7y | | M×3=n | | 6(3p-3)=-3(4p+4)-6 | | 3(x-5)=-4(-x+6) | | (2x+12)+(5x+14)=180 | | (2x+12)+(5x+14)=90 | | 2x(x+5)-3(x^+2x-1)=9-5x-x^ | | p=(2p-6)(p+1) | | 5(5+4)=n | | X2-12x=27 | | (5x+18)=52 | | 9x-4=94 | | 6x+2=8+5x | | 260=p*5253/808 | | 5x+29=9x=15 | | 3x+1/2=6x-3/4 | | 6.8=2.9+m | | 5(x-2)=30 | | x+(75+x)=180 | | 6x+4x-12+10=0 | | 8(4n+5)=3(n-6) | | -4(w+3)-w-2=-5(w+4)+6 | | d|5.20=2.4 | | 3(2z+7)=2(2z+1)+z | | 20=16t2+24t+5 | | x/x-1-1/x+1=2/x^2-1 | | 180=(8+x)+(3x) |

Equations solver categories